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Abstract
We consider the one-dimensional ferromagnetical Ising model with long-range
interaction under external field blocks of equal length with alternating signs
and investigate the low-temperature phase diagram of this model. It turns out
that when the absolute value of the external field is sufficiently small, the set of
Gibbs states substantially depends on block size: at small block sizes there are
at least two Gibbs states and at large block sizes there is a unique Gibbs state.

PACS numbers: 05.50.+q, 75.10.Hk

1. Introduction

Consider the one-dimensional ferromagnetical Ising model with long-range interaction:

H0(φ) = −
∑

x,y∈Z1;x>y

U(x − y)φ(x)φ(y) (1)

where the spin variables φ(x) associated with the one-dimensional lattice sites x take values
from the set {−1, 1} and the pair potential U(x − y) = (x − y)−γ , 1 < γ � 2. The condition
γ > 1 is necessary for the existence of the thermodynamical limit. We focus on the case
γ � 2, otherwise

∑
x∈Z1,x>0 xU(x) < ∞ and the model (1) has a unique Gibbs state [1–3].

Dyson considered a model (1) with a positive pair potential U(r) = U(|x −y|) satisfying
the conditions [4, 5]:

(1)
∑∞

r=1 U(r) < ∞,
(2) U(r) > U(r + 1),
(3)

∑∞
r=1(ln ln(r + 4)) (r3U(r))−1 < ∞
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(the model (1) with 1 < γ < 2 readily satisfies these conditions) and proved that one can find
a value of the inverse temperature β1 such that if β > β1 then there exist at least two extremal
Gibbs states P+ and P− corresponding to the ground states φ(x) = +1 and φ(x) = −1.
This very profound result is connected with the following fact. Let us consider the segment
[−n, n], the boundary conditions φ = 1 and the configuration φn

−1(x) such that φn
−1(x) = −1,

if x ∈ [−n, n]; φn
−1(x) = 1, if x ∈ Z1 − [−n, n]. Then the difference between the energies of

the configurations φn
−1 and φ has the order n2−γ . In other words, in the one-dimensional case

there is an analog of the surface tension and this fact leads to the existence of two extremal
Gibbs states, as could be anticipated [4, 5]. In the borderline case γ = 2 the existence of
phase transition was established by Frohlich and Spencer in [6]. Other sophisticated results
in this borderline case concerning percolation density magnetization were obtained in [7, 8].
An alternative proof of the existence of phase transitions in ferromagnetic systems (1) for
1.5 � γ � 2 based on geometric detailed descriptions of the spin configurations has recently
been given in [9].

In this paper, we investigate the phase diagram of the model (1) under an additional
external field. Consider a model with the following Hamiltonian:

H(φ) = H0(φ) +
∑
x∈Z1

hxφ(x). (2)

Naturally, if the external field is sufficiently strong, it exterminates the pair interaction and the
dependence on the boundary conditions disappears in the limit.

Theorem 1. At any fixed value of the inverse temperature β there exists a constant h0 such
that for all realizations of the external field {hx, x ∈ Z1} satisfying |hx | > h0, x ∈ Z1 the
model (2) has at most one limiting Gibbs state.

Theorem 1 follows from the following theorem 2 which covers a more general case when
the interaction potential is not specified. Consider a model on Z1 with the formal Hamiltonian

H0(φ) =
∑
B⊂Z1

U(φ(B)) (3)

where the spin variables φ(x) ∈ �,� is a finite subset of the real line R, φ(B) denotes
the restriction of the configuration φ to the set B, the potential U(φ(B)) is not necessarily
translationally invariant. On the potential U(φ(B)) we impose a natural condition, necessary
for the existence of the thermodynamic limit:∑

B⊂Z1:x∈B

|U(φ(B))| < C0 (4)

where the constant C0 does not depend on x and the configuration φ. Now we consider random
perturbations of the model (3), namely a model with the Hamiltonian

H(φ) = H0(φ) +
∑
x∈Z1

hxφ(x) (5)

where {hx, x ∈ Z1} is a random external field.

Theorem 2 [10]. For any model (3) and any fixed value of the inverse temperature β there
exists a constant h0 such that for all realizations of the random external field {hx, x ∈ Z1}
satisfying |hx | > h0, x ∈ Z1 the model (5) has at most one limiting Gibbs state.

The case of an external field with a small absolute value is open for all possibilities.
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We consider perturbations of the model (1) with the periodic external field constituted by
alternating (+) and (−) blocks:

H(φ) = −
∑

x,y∈Z1;x>y

U(x − y)φ(x)φ(y) +
∑
x∈Z1

hr
xφ(x) (6)

where hr
x is a periodic function of period 2r: hr

x = hx+2rk for all integer values of k and for
some fixed positive ε

hr
x =

{
+ε if x = 1, . . . , r

−ε x = r + 1, . . . , 2r.

The main result of the present paper is the following

Theorem 3. Let ε be an arbitrary positive fixed number not exceeding some constant h1.
There exist natural numbers R1 = R1(ε) and R2 = R2(ε) such that at all sufficiently small
temperatures the model (6) has at least two limiting Gibbs states for all r � R1 and at most
one limiting Gibbs state for all r > R2.

The value of h1 will be given below.

2. Proof of theorem 3

Part 1. Now we prove that there exists a natural number R2 such that for all r > R2 at
sufficiently small temperatures there is at most one limiting Gibbs state. Evidently for this
part of theorem 3 the condition ε < h1 is not required.

For each natural number n let Vn be the interval
[

1
2 − r − rn, 1

2 + r + rn
]
. We denote

the set of all configurations φ(Vn) by �n. Suppose that the boundary conditions φi, i = 1, 2,

are fixed. The concatenation of the configurations φ(Vn) and φi(Z1 − Vn) we denote by χ :
χ(x) = φ(x), if x ∈ Vn and χ(x) = φi(x), if x ∈ Z1 − Vn. Define

Hn(φ|φi) =
∑

B⊂Z1:B∩Vn �=∅
U(χ(B)).

Let φmin,i
n ∈ �n be a configuration with the minimal energy at fixed boundary conditions

φi :

min
φ∈�n

Hn(φ|φi) = Hn

(
φmin,i

n

∣∣φi
)
.

Define the following periodic configuration σ r :

σ r(x) =
{

+1 if x = 1, . . . , r

−1 x = r + 1, . . . , 2r

and σ r(x) = σ r(x + 2rk) for all integer values of k.
The following lemma describes the structure of the configuration φmin,i

n . It turns out that
at sufficiently large values of R in the configuration with the minimal energy, spins of all sites
are directed along the external field (even for sites located very close to the boundary).

Lemma 1. Let ε be any fixed positive number and the boundary conditions φi(Z1 − Vn)

be fixed. A natural number R2 exists such that if r > R2 then the configuration φmin,i
n is

independent of the boundary conditions φi: φmin,i
n (Vn) = σ r(Vn).

Let us consider an arbitrary configuration φ. We say that an interval [k − 1/2, k + 1/2]
is not regular, if φ([k − 1/2, k + 1/2]) �= σ r([k − 1/2, k + 1/2]). Two non-regular cubes
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are called connected provided their intersection is not empty. The connected components of
non-regular segments defined in such a way are called supports of contours and are denoted
by supp K . A pair K = (supp K,φ(supp K)) is called a contour. The set of all non-regular
cubes we call a boundary of the configuration φ and denote by �. |�| denotes the total length
of all non-regular intervals.

It turns out that at large values of R the configuration with the minimal energy φmin,i
n = σ r

in lemma 1 is the Peierls stable ground state [11].

Lemma 2. Let the boundary conditions φi(Z1 − Vn) be fixed and φ(Vn) be an arbitrary
configuration. A natural number R2 exists such that if r > R2 then

Hn(φ|φi) − Hn(σ
r |φi) � τ |�|

where a positive constant τ = ε and � is a boundary of φ(Vn).
Obviously, lemma 1 is a immediate consequence of lemma 2. Let us prove the following

auxiliary

Lemma 3. Let the boundary conditions φ̄(Z1 − [1, r]) be fixed and φ([1, r]) be an arbitrary
configuration. A natural number R exists such that if r � R2 then

Hn(φ|φ̄) − Hn(σ
r |φ̄) � τ |�| (7)

where a positive constant τ = ε and � is a boundary of φ([1, r]).

Proof. Let � be the boundary of the configuration φ([1, r]). In other words, φ([1, r]) is a
perturbation of the constant configuration σ r([1, r]) = 1 on all sites belonging to �. �

We choose a natural number N1 such that 2
∑∞

i=N1+1 U(i) = 2
∑∞

i=N1+1 i−γ < 1 and
define a real number M by

M = max

(
N1,

(
8

(2 − γ )ε

) 1
γ−1

)
.

The proof of the inequality (7) we divide into two cases.

Case 1. Large perturbations: |�| > M . We readily have

Hn(φ|φ̄) − Hn(σ
r |φ̄) � 2ε|�| − 2

∑
x,y∈Z1;x∈�,y∈Z1−[1,r]

U(|x − y|)

� ε|�| + ε|�| − 2


2

|�|∑
1

iU(i) + 2
∞∑

|�|+1

U(i)


 .

The last inequality is due to the fact that the term U(i) with i � |�| in∑
x,y∈Z1;x∈�,y∈Z1−[1,r] U(|x − y|) can appear at most 2i times. We estimate the first sum

by integral estimation and note that since |�| > N1 the second sum is less than 2 :

Hn(φ|φ̄) − Hn(σ
r |φ̄) � ε|�| + ε|�| − 2

(
2

(
1 +

∫ |�|

1
t1−γ dt

)
+ 2

)

=




ε|�| + ε|�| −
(

8 + 4
|�|2−γ − 1

2 − γ

)
if γ < 2

ε|�| + ε|�| − (8 + 4 ln|�|) if γ = 2
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Now note that since |�| > M in both cases

Hn(φ|φ̄) − Hn(σ
r |φ̄) � ε|�|.

Thus, the inequality (7) is held with τ = ε.

Case 2. Small perturbations: |�| � M . Given ε choose a natural number N = Nε such that
2
∑∞

i=Nε+1 U(i) = 2
∑∞

i=Nε+1 i−γ < ε. Then

Hn(φ|φ̄) − Hn(σ
r |φ̄) =

∑
x∈�


2ε +

∑
y∈[1,r]

(σ r(x)σ r(y) − φ(x)φ(y))|x − y|−γ




+
∑

y∈Z1−[1,r]

(σ r(x)φ̄(y) − φ(x)φ̄(y))|x − y|−γ ) =
∑
x∈�

(
2ε +

∑1
+

∑2
)

.

(8)

Obviously, all terms of
∑1 are non-negative. Now to each negative term of

∑2 with
|x − y| � Nε we assign a positive term of

∑1 with the same absolute value such
that different terms of

∑1 will be assigned to different terms of
∑2. Suppose that

(σ r(x)φ̄(y) − φ(x)φ̄(y))|x − y|−γ is a negative term of
∑2. Then the only possibility

is: φ̄(y) = −1 and φ(x) = 1. Let us define a sequence of lattice points vm,m � 1, as follows:
v1 = y, v2 = x, vm = T (vm−1, vm−2) for m > 2, where T (x, y) = 2x − y denotes the point
which is symmetric to the point y with respect to the point x. Let k be a minimal index with
positive value of φ(vk): k = minφ(vi )=1 i. Now to the term (σ r(x)φ̄(y)−φ(x)φ̄(y))|x − y|−γ

we assign a term (σ r(vm−1)σ
r(vm) − φ(vm−1)φ(vm))|vm−1 − vm|−γ provided such k exists

and vk belongs to the interval [1, r]. We guarantee the condition vk ∈ [1, r] by choosing
sufficiently large R: indeed, since |x − y| � Nε the number of sites y ∈ [1, r] with negative
φ(y) is |�| and is bounded by M. If r � R2 = Nε(M + 1) then vk is well defined and by
construction the above-defined correspondence is one-to-one. As far as the remaining negative
terms of

∑2 with |x −y| > Nε , by definition of Nε the absolute value of their sum is bounded
by ε. Thus, 2ε +

∑1 +
∑2 � ε and

Hn(φ|φ̄) − Hn(σ
r |φ̄) �

∑
x∈�

ε = ε|�|.

Lemma 3 is proved.

Proof of lemma 2. Let us partition the segment Vn = [
1
2 − r − rn,− 1

2 + r + rn
]

into 2n + 1
segments of length r : Vn = ∪n

i=−n−1Ii , where Ii = [
1
2 + ir, 1

2 + r + ir
]
. We have

Hn(φ|φi) − Hn(σ
r |φi) =

n∑
i=−n−1

Ei +
n∑

i �=j ;i,j=−n−1

Ei,j +
n∑

i=−n−1

Ei,n

where

Ei =
∑

x,y∈Z1;x,y∈Ii ;x>y

U(x − y)(σ r(x)σ r(y) − φ(x)φ(y)) +
∑

x∈Z1;x∈Ii

hx(φ(x) − σ r(x)),

Ei,j =
∑

x,y∈Z1;x∈Ii ;y∈Ij

U(|x − y|)(σ r(x)σ r(y) − φ(x)φ(y))

and

Ei,n =
∑

x,y∈Z1;x∈Ii ;y∈Z1−Vn

U(|x − y|)(σ r(x)σ r(y) − φ(x)φ(y)).
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Now we define Ai = Ei + Ei,n +
∑

j :j>i Ei,j . In other words, we distribute terms Ei,j : we
add Ei,j either to Ei or to Ej . Actually this distribution can be carried out in any other way.
Finally, we have

Hn(φ|φi) − Hn(σ
r |φi) =

n∑
i=−n−1

Ai.

In order to prove the lemma 2 we prove the following inequality,

Ai � τ |�i |, (9)

where |�i | is the length of the intersection of the support of the boundary � with the interval Ii .
Without loss of generality we assume that σ r(Ii) = 1. Now the inequality (9) is a consequence
of lemma 3: as in the proof of lemma 3 we can expand Ai (as in (8)) :

Ai =
∑
x∈�

(
2ε +

∑1
+

∑2
)

(10)

and again as in the proof of lemma 3 to each negative term of
∑2 we can assign a positive

term of
∑

1 (due to the definition of Ai the number of negative terms in
∑2 of (10) is not

greater than the number of negative terms in
∑1 of (10)). Thus, lemma 2 is established with

R2 = Nε(M + 1). �

Now we prove the uniqueness of the limiting Gibbs states in model (6). In our case
the well-known uniqueness theorem [1–3] is not applicable: since the interaction has a very
long range (γ � 2) the total interaction energy of the spins on two complementary half-lines
is not finite. On the other hand, the fact that a one-dimensional model with translationally-
invariant long-range interaction has a unique ground state cannot guarantee the absence of
phase transition [12].

In order to prove the uniqueness of Gibbs states we use the method employing closed
relationship between phase transitions and percolation in models with unique ground state
[13]. The method uses the idea of ‘coupling’ of two independent partition functions and
is based on the method used in [14]. Similar ‘coupling’ arguments are also at the center
of the disagreement percolation approach to the Gibbs states uniqueness problem [15, 16].
The application of this theory to one-dimensional models at low temperatures produces the
following uniqueness criterion [13].

We say that the ground state φgr of the model satisfies the Peierls stability condition, if
there exists a constant t such that for any finite set A ⊂ Z1H(φ′) − H(φgr) � t |A|, where |A|
denotes the number of sites of A and φ′ is a perturbation of φgr on the set A.

Condition 1. The only ground state φgr of the model satisfies the Peierls stability condition.

Condition 2. There exists a constant α < 1 such that for any number L and any interval
I = [a, b] with the length n and for any configuration φ(I)∑

B⊂Z1;B∩I �=∅,B∩(Z1−[a−L,b+L])�=∅
|U(B)| � const nα Lα−1.

This condition is very natural and obviously is held for a pair potential U(x −y) = (x − y)−γ

(1 < γ � 2) of the model (6).

Theorem 4 [13]. Suppose that a one-dimensional model with a finite spin space and with the
translationally-invariant Hamiltonian

H(φ) =
∑
B⊂Z1

U(φ(B))
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where
∑

B⊂Z1;x∈B |U(B)| < const satisfies the conditions 1 and 2. Then there exists a value
of the inverse temperature βcr such that if β > βcr then the model has at most one limiting
Gibbs state.

We can treat the model (6) as a translationally invariant model: it is well known that if we
partition the lattice into disjoint intervals Q(z) of length 2r centered at z ∈ 2rZ1 and replace
the spin space {1,−1} by {1,−1}Q including 22r elements, then the model from translationally
periodic with period 2r transfers to the translationally invariant model. Therefore, we can
apply theorem 3 in our case. Lemmas 1 and 2 provide that the model (6) satisfies the condition
1 and the first part of theorem 2 immediately follows from theorem 4.

Part 2. In order to prove the existence of a natural number R1 such that the model (6) for all
r � R1 and at all sufficiently small temperatures has at least two limiting Gibbs states, we
prove that if ε is a sufficiently small positive number and r = 1 then the model (6) has at least
two limiting Gibbs states. In this case we have

H(φ) =
∑

x,y∈Z1;x>y

U(x − y)φ(x)φ(y) +
∑
x∈Z1

h1
xφ(x)

=
∑

x,y∈Z1;x=y+1;x is odd

(
U(1)φ(x)φ(y) +

1

2
ε(φ(x) − φ(y))

)
+

∑
x,y∈Z1;x=y+1;x is even

×
(

U(1)φ(x)φ(y) − 1

2
ε(φ(x) − φ(y))

)
+

∑
x,y∈Z1;x>y+1

U(x − y)φ(x)φ(y)

=
∑

x,y∈Z1;x>y

Ū(x − y)φ(x)φ(y)

where Ū (k) = U(k) for k � 2 and Ū (1) = U(1) ± ε(φ(x)−φ(y))

2φ(x)φ(y)
. In other words, we

incorporate the half of the external field hx into the interaction between neighboring spins
φ(x − 1) and φ(x) and the other half of the external field hx into the interaction between
neighboring spins φ(x) and φ(x + 1). The new potential Ū (1) becomes U(1), U(1) + ε or
U(1) − ε depending on the parity of x and the values of spins at x and y. Let us choose h1

such that h1 � U(1) − U(2). Then the model remains ferromagnetical: Ū > 0. Actually, the
potential Ū (1) is a constant potential U(1)−ε plus some nonnegative correction taking values
0, ε or 2ε. Also due to the condition h1 � U(1) − U(2) the new potential is monotonically
decreasing: Ū (k) < Ū(2) < Ū(1) in all cases and for all values of k � 3. Thus, for all
ε < h1 the obtained Hamiltonian is ferromagnetical and has two Peierls stable ground states:
constant configurations φ = 1 and φ = −1. The statement of the theorem 2 now directly
follows from [4, 5] for 1 < γ < 2 and from [6] or [9] for γ = 2. Theorem 3 is proved.

3. Concluding remarks

(1) One-dimensional models with combined ferromagnetic, antiferromagnetic short or long-
range interactions and external fields exhibit many expected and unexpected interesting
results [17].

(2) We expect that the effect of the external field is ‘monotonic’ with respect to the block
size; in other words, the values of R1 and R2 coincide. But the methods of this paper do
not allow us to prove this statement.

(3) It follows from the proof of theorem 2 that if the block size exceeds R2, then instead
of blocks with alternating signs we can consider any order of + and − blocks of sizes
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exceeding R2 and the second part of theorem 2 will be still held: at sufficiently low
temperatures the limiting Gibbs state will be unique.
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